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ABSTRACT 

An alternative to the perturbation expansion of Poincare and Lighthill is proposed, 
and a simple method of deriving the new expansion is given, for the case of a non- 
singular boundary. The new formulation has the advantage that the process of stretching 
of the independent coordinate is uncoupled from the rest of the problem, which can 
then be handled by standard techniques and programs. The method is illustrated by 
a simple example of pulsational instability in a one-zone approximation to a variable 
star. 

I. INTRODUCTION 

The method of coordinate stretching in perturbation analysis was initiated 
by Lindstedt [l], PoincarC [2], and Lighthill [3], and consists of an expansion of 
independent as well as dependent variables. In an earlier paper (Paper I, Usher [4]) 
we applied the PL perturbation 

y = y; + yIi + . . . (i = 1, 2, 3,4), 

to the system 

governing the structure of a star in quasi-static equilibrium. The resulting perturba- 
tion equations in first order were found to contain the arbitrary function x1 and 
its derivative (with respect to x0) in the nonhomogeneous terms, so that a choice 

1 This work was supported in part under U. S. Air Force contract 19(628)-3877 with Harvard 
University. 
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for X, is necessary before the complete solution to the differential equations can be 
found. In this paper we derive an alternative to the conventional PL expansion 
which contains the arbitrary function in the expansion for y and not in the differen- 
tial equations. In fact, the system of differential equations is the same as that for 
which no PL expansion has been applied; thus standard methods can be used for 
their solution in both exact and numerical treatments and the method of coordinate 
stretching can be used as a second step if necessary. 

In Section II the new PL expansion is derived in the context of the small- 
parameter method, although in some problems which are essentially nonlinear 
it is convenient to set this small parameter equal to unity [5]. In addition we 
consider for the present only those cases for which the boundary points are 
nonsingular. In Section III we present a method of derivation which is useful 
because of its simplicity, and in Section IV we illustrate the method by a simple 
example. 

II. EQUATIONS 

A. Perturbation Equations 

We consider the system of nonlinear equations 

dv/du = F(u, v, c) cc < I)> (1) 

where v and F are n-component vectors. We assume that F is analytic in E and can 
be written as a power series in E: 

dv/du = f(u, v) + cg(u, v) + E%(u, v) + -se; (2) 

correspondence between these equations and those of Paper I is found by setting 
g, h, . . . _= 0. We expand the dependent variables v and the independent-variable 
u in the manner usually employed (Poincare [I], Lighthill [2], Tsien [6], Krook [5]): 

v=v,+fv,+8v,+~*~, (3) 

u = 24, + a+ + E2U2 + *** . (4) 

Here u0 is the new independent variable and all other terms are functions of U, . 
Throughout this paper subscripts on a function denote the order of the function 
and superscripts on a vector denote the component of that vector; i.e., vzl denotes 
the ith component of the second-order vector function v2 . For simplicity we 
consider terms up to and including second order only. 
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Taking derivatives with respect to U, rather than u, we rewrite Eq. (2) as 

dv du -=- 
du, du,, [f(% v) + &, v) + E2h(U, v) + -1, 

where 

and 
du du, 
du,=l+?&+ du, 

E2 4% + . . . 

(5) 

(6) 

(7) 

from Eqs. (3) and (4). We expand the functionsf, g, h, . . . about the values (v,, , uJ 
using Taylor’s theorem; thus, summing over repeated indices we have for f, 

f(u, 4 =.f(uo 9 vo) + E 01 [ iG5~o+u'(~~j 

+~~[v:(~)~+u2(~),+~Vllv~~(~)0 

+ Vl% (&j. + ; U12 (%),1 + a**. (8) 

Similar expressions hold for g(u, v) and h(u, v); quantities with zero subscripts are 
evaluated at (uO , vO). 

We substitute Eqs. (6)-(8) in (5) and separate terms of equal order in E and 
obtain the standard PL-perturbation equations up to order 2, as follows. 

(9) 

8: 2 0 = hi ($j, + 4 gj, +A% + $7,; 

& quL = vi 

0 
($j, + u2 (9, +r,$f + ho 

+ ; VlW (-a,, + wh" (&j, + ; u12 ($j, 

+v,"($) +%(~j, 

+~[vl~~~~o+ul(~~o+go]. 
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The conventional (non-PL) perturbation equations are recovered by letting 

thus 

ug = u, (12) 

uj = 0, (i = 1, 2, . ..). (13) 

eo: 2 = fo; 

El: + = vl+$) fg,; 
0 

(14) 

3: x - v2i $ 
dv, _ 

( i 0 
+ ho + 5 Vl 01 ' i j (a), + vii (&j. (16) 

B. First-Order Equations and Boundary Conditions 

The essence of the PL method is that ui(uo), (i = 1,2, . ..) are arbitrary and can 
be chosen to facilitate the solution of the problem at hand. For the first-order 
equation (lo), we customarily choose a relation between the terms in U, occurring 
in that equation. 

Quite generally, let us suppose (see, e.g., Wasow [7]) that 

du, fo du, + ~1 (g), = Go(uo), 

where Go is an n-component vector, one component of which (say, Gok) is arbitrary. 
Having specified this component, the function u1 can be found and Eq. (17) 
determines the remaining (n - 1) components of Go . The first-order PL equation 
(10) then becomes 

dv, af 
- = vli al+ duo ( 1 - + go + Go. 

0 

In applications of the PL method, Eqs. (17) and (18) along with appropriate 
boundary conditions can be solved once the arbitrary component Go” is specified. 
However, at an early stage of the solution it is not always obvious which compo- 
nent of Go should be arbitrary and what the form of that component should be. 
Indeed, it is often not apparent whether the PL expansion is necessary at all. 
Consequently, it is desirable to postpone the choosing of Gok until as much of 
the analysis as possible is completed. 

According to available methods such a postponement would mean solving 
the non-PL equations (14)-(16) first and, on establishing the need for the PL 
expansion, to return to the PL equations (9)-(11) with knowledge of the difficulties 
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involved (for example, the series solution may break down in some part of the 
domain of interest). The arbitrary component G,” would then have to be decided 
upon, by use of the criterion that some or all of the difficulties of solution be 
eliminated. This necessitates solving the kth component of Eq. (17) with the correct 
choice for G,” such that the resulting expressions for v1 and U, overcome the diffi- 
culties of solution. Only in the easiest cases can a satisfactory choice be made 
simply by inspection. We shall show that the procedure described above can be 
made more direct and more efficient by foregoing the separation of Eq. (10) 
into Eqs. (17) and (18) by means of the function G, , and that the new approach 
enables the arbitrary PL functions to be chosen easily by inspection of algebraic 
equations rather than by finding particular solutions of differential equations. 

The essential feature of the development in first order is to note that 

(19) 

which can easily be verified by differentiation and use of Eq. (9). Equation (10) 
then becomes 

-& tfJ1 - %h) = (01 - ~lfo)i (S), + go 3 0-Y 

which can also be derived from Eq. (18) by using Eq. (19) to eliminate G, . For 
simplicity we write Eq. (20) as 

dcl . af 
- = 8< duo ( i - +go, 

at+ 0 
where 

01 = 0, - UlfO . (22) 

Equation (21) is clearly identical in form to Eq. (15), which is the non-PL 
equation in first order. Thus, in solving Eq. (15) without the PL expansion, we are 
in effect solving Eq. (21) with the PL expansion, since u1 has been incorporated 
into the unknowns t$ . A similar simplification can be effected in second order; 
we obtain 

where 
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as can be verified by differentiation and direct substitution. Equation (23) is 
identical in form to the non-PL equation (16), and the PL functions u1 and uE 
appear in the new dependent variables ~7~ . Note that Eqs. (22) and (24) can be 
written in the alternative forms 

61 = 01 - Ul(dV,/dU,) ) (25) 

duo u12 d%, dcl ‘us = Q, - u2 - - - - - u1 - 
duo 2 dz.Q du, ’ (26) 

as can be verified by inspection. Yet another form of Eq. (26) is found by using 
Eq. (21): 

duo G2 = v2 - u2 - - 
duo (27) 

C. Boundary Conditions 

To achieve complete correspondence between the solutions of Eqs. (10) and (21) 
and of Eqs. (11) and (23) we must examine the boundary conditions. It suffices 
for the applications of this paper to consider functions F in Eq. (1) that are regular 
within a finite domain about a boundary point 

at which v is finite or zero: 

u=u (28) 

v = v. (2% 

Other cases are discussed by Usher [8]. 
With reference to the perturbation equations (3) and (4) we take quite generally 

vo = vo 2 (30) 

vi = vi (i = 1, 2,...), (31) 

such that 

v = v, + cv, + GVz + ... . (314 

Because the PL functions ui (i = 1,2,...) are arbitrary, their boundary values are 
also arbitrary. Let us choose 

u, = u, (32) 

ui = 0 (i = 1, 2,...). (33) 
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Therefore, if the conventional non-PL equations are used, boundary conditions 
(32) and (33) are in accord with Eqs. (12) and (13); i.e., 

ui E 0, v&) = vi ) (i = 1, 2,...). (34) 

Concerning the boundary conditions on 4 we see from Eqs. (22), (30)-(33) that 

4(U) = Vl 3 (35) 

since by assumptionf, is nonsingular at the boundary. A comparison of the tilde 
system of Eqs. (21) and (35) with the conventional non-PL system of Eqs. (15) 
and (34) reveals the interesting fact that they are identical except for the inter- 
pretation of the dependent and independent variables. 

Concerning the boundary conditions on 5, , a similar argument using Eqs. (27), 
(30)-(33) and the fact that all functions and their derivatives are regular at the 
point (U, V), shows that %JU) = 0. Thus, to the order considered in this paper, 

iqu> = v* (i = 1, 2,...). (36) 

D. The New PL Approach 

We may summarize the results of the preceding sections as follows: When the 
point (U, V) is a regular point of the system (l), the perturbation equations (9), 
(21), and (23) with boundary conditions (30), (31), and (36) are identical to the 
non-PL equations (14)-(16) and (34), yet contain the PL feature through the new 
perturbation equations, 

v = vo + E 
( 

duo t71 + 241- 
) ( 

+ E2 duo 
duo 

g2 + 242 -&- + 3- 
0 

2e g$+ulJg)+ **a, (37) 

u = 240 + EU1 + E2U2 + *** . (38) 

By inspection of the terms in parentheses we determine in each order the functions 
ui (i = 1,2,...) from the known functions v. , fii (i = 1, 2,...) and their derivatives 
according to the particular needs of the problem. The non-PL expansion is 
recovered by choosing ui = 0, (i > 0) in which case er = vi (i > 0). 

We obtain the expansions (37) and (38) from Eqs. (3), (4), (22), and (26). The 
special case of Lindstedt’s method [9] is obtained by setting, in Eqs. (37), (38), 

where yi = constant. 
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III. A SIMPLE DERIVATION 

Because the new PL expansions contain more terms than the conventional ones, 
they are more difficult to remember. However, a simple derivation of the new 
expansions exists which overcomes this difficulty and which also affords con- 
siderable insight into the new method. 

In the conventional PL expansion 

22 = q&J> + EU&l) + E2Z’2(U,) + .** , (39) 

24 = %I + EU,(Uo) + E2U2(Uo) + * * * , (40) 

it has been assumed that the perturbation functions are all functions of u. . Let us 
however expand a conventionally, 

u = uo(u) -t EU&) + E24U) + **’ (41) 

and then apply Eq. (40). With Taylor’s theorem it is not difficult to derive the 
transformed expansion for 21 which is identical to Eq. (37). It is reasonable to 
believe that the new PL expansion can be derived up to any order by this method, 
but we have not shown this rigorously. In addition the general validity of the 
new PL expansion must await development of the theory for arbitrary boundary 
conditions. 

IV. A SIMPLE EXAMPLE 

In studies of the one-zone approximation to a variable star, the following 
equations arise (Usher and Whitney [lo]; Usher [I 1 J) in the case of nonlinear 
adiabatic pulsations: 

dx/dt = y, (42) 

dy/dt = --w2x + ECX,,X~ + E~c+~x~ + ..* . (43) 

Here x is the amplitude, y the velocity, and w the linear adiabatic frequency of the 
zone; o/2o and 01~~ are constants and E is a small parameter given by the ratio 
r/r0 = 1 + EX and whose magnitude is such that x = O(1). In equilibrium the 
distance r from the center of the star is equal to r, . 

As initial conditions we choose 

x=ao+e[*]+e2[&($$--~)]+*.., (44) 
y=o (45) 

at 
t = 0, (46) 



A NEW PL EXPANSION 31 

where a, is some initial amplitude of the linear problem, i.e., we measure the time 
from a zero point in the velocity at which point the displacement is given by the 
value of Eq. (44). These initial conditions have been chosen in order to minimize 
the proliferation of terms as the solution is carried to successively higher orders. 
According to the prescription of Section II.D, we let 

v = vo + E [ 
dvo 4 + t, dt, 1 [ + Ez v" 

2 
+ t dvo I tl" d2vo 

2 dt, 2 dt,2 + fl$] + ***, (47) 

t = to + Et1 + l 2t2 + .**, (48) 

where v = {x, v}. Substituting (47) and (48) in (42) and (43) gives a system of 
equations identical (but for the zero subscripts on the new independent variable) 
to the system that would have resulted if no PL expansion had been used; i.e., 
the linearized equations. 

dxoldto = yo , 

dy,/dt, = -co2xo 

(49) 

(50) 

and in first order 

dx”,/dt, = J, , (51) 

dj$/dt, = --w23i;, + a20x02, (52) 

while in second order we find 

ds,ldt, = y2 , (53) 

djj2/dto = -cow2x”, + 2a,,x,S, + c+~x~~. (54) 

By analogy with the choice of initial conditions in Section 1I.C in zero and 
higher orders, we have from equations (44)-(46): 

x0 = a0 3 y, = 0, to = 0; (55) 

$1 = a0%,,/3W2, 71 = 0, t1 = 0; (56) 
3 2 

$2=gL& $A+ 
( 1 

y2 = 0, t, = 0. (57) 

The linear system describes a simple harmonic oscillator whose solution under 
conditions (55) is the generating solution 

x0 = a, cos ot, ) y, = --a,~ sin wto , (58) 

which possesses an irregular singularity at to = co. 
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When the first-order equations (51) and (52) are considered along with the gene- 
rating solution, it is not immediately obvious whether a PL expansion is necessary 
in order to ensure uniform convergence as t -+ co and, if so, what the form for t, 
should be. As a first step we solve Eqs. (51) and (52) to give 

s1 zzz - $p (1 + 5 cos 2wt,), 

s1 = 
Uo2@20 

3w 
sin 2wto (60) 

It is immediately clear, without the necessity of considering the PL expansion, 
that no coordinate stretching is necessary in first order since there are no secular 
or secular periodic terms in the standard solution. Thus in the first-order terms 
in Eq. (47), 

tl = 0. 

Consider next the second-order solution to Eqs. (53) and (54): 

(61) 

3 

( 

2 

f2 = * Jf2 3 3~3’ --~ o;so cos 3wt, + 2 4 + 6w2 o 1 ( 
5~,2, t sin wt - __ 

) 0; (62) 

jj2 _ ;i 3% 

( 

~+~jsin~to--$$(~-~) sin 3wto 

5cY 
+;c?03(*+&) to cos cot,. (63) 

Since these solutions diverge as to -+ co we can use the PL function t, to attempt 
to remove the singularity. Since t, = 0 from Eq. (61), we have from Eqs. (48) and 
the generating solution (58) 

x2 = if2 - a,wt, sin ot, , (64) 

y, = jj2 - aoo2t2 cos ot, . (65) 

To remove the secular periodic terms in the solutions (62) and (63) we let 

(66) 

which removes the singular terms from both x and y. We have therefore ascertained 
that a coordinate stretch is needed and have determined its magnitude without 
recourse to the particular solution of differential equations. Numerical verification 
of Eq. (66) is described elsewhere. (Usher [Ill.) 
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This elementary example illustrates the mechanics of the new PL approach to 
a particular class of problem and indicates that it will be more useful, the larger 
the order of the system. In the third-order system discussed elsewhere (Usher [l l]), 
the new approach proved especially useful as a check of the solution which we 
had first found by conventional means. In fact, a discrepancy between the solutions 
by the two methods was traced to an algebraic error in the conventional method; 
that no errors were made in obtaining the solution by the new method may well 
be due to the more straightforward technique and ease of application of the new 
PL expansion. 
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